

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Vulnerability Information

4 Code Overview

4.1 Contracts Description

4.2 Visibility Description

4.3 Vulnerability Summary

5 Audit Result

6 Statement

1 Executive Summary

On 2025.03.31, the SlowMist security team received the UXUY Protocol team's security audit application for UXUY

Smart Wallet, developed the audit plan according to the agreement of both parties and the characteristics of the

project, and finally issued the security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a complete

security test on the project in the way closest to the real attack.

The test method information:

Test method Description

Black box testing Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the
internal running status, mining weaknesses.

White box
testing

Based on the open source code, non-open source code, to detect whether there are
vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi
project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is
strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is
recommended to fix medium-risk vulnerabilities.

Low
Low severity vulnerabilities may affect the operation of the DeFi project in certain
scenarios. It is suggested that the project team should evaluate and consider whether
these vulnerabilities need to be fixed.

Weakness There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.

Suggestion There are better practices for coding or architecture.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

Serial Number Audit Class Audit Subclass

1 Overflow Audit -

2 Reentrancy Attack Audit -

3 Replay Attack Audit -

4 Flashloan Attack Audit -

5 Race Conditions Audit Reordering Attack Audit

6 Permission Vulnerability Audit
Access Control Audit

Excessive Authority Audit

7 Security Design Audit

External Module Safe Use Audit

Compiler Version Security Audit

Hard-coded Address Security Audit

Fallback Function Safe Use Audit

Show Coding Security Audit

Function Return Value Security Audit

External Call Function Security Audit

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using

automated analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.

Serial Number Audit Class Audit Subclass

7 Security Design Audit
Block data Dependence Security Audit

tx.origin Authentication Security Audit

8 Denial of Service Audit -

9 Gas Optimization Audit -

10 Design Logic Audit -

11 Variable Coverage Vulnerability Audit -

12 "False Top-up" Vulnerability Audit -

13 Scoping and Declarations Audit -

14 Malicious Event Log Audit -

15 Arithmetic Accuracy Deviation Audit -

16 Uninitialized Storage Pointer Audit -

3 Project Overview

3.1 Project Introduction

UxuyWallet is a smart contract wallet system based on a simplified ERC4337 standard that allows users to create

and manage non-custodial smart contract wallets, supporting batch transaction execution, meta-transaction

processing, and gas fee sponsorship functionality. The system employs an upgradeable architecture, enabling users

to flexibly execute transactions, delegate administrators (when authorized) to perform operations on their behalf, set

time limits for administrator authorizations, and manage wallet ownership changes; simultaneously, through proxy

contracts and a logic registry structure, it ensures wallet functionality can be upgraded at any time without asset

migration, providing users with a convenient blockchain asset management solution, particularly suitable for

blockchain application scenarios that require simplified user experiences and enhanced transaction flexibility.

3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

NO Title Category Level Status

N1
Risk of excessive

authority
Authority Control
Vulnerability Audit

Medium Fixed

N2

Admin Authorization
Bypass Enables

Unauthorized Fund
Draining

Design Logic Audit Low Acknowledged

N3
Redundant

Computation of
finalSalt

Others Suggestion Fixed

N4
Failure to follow the

Checks-Effects-
Interactions principle

Reentrancy
Vulnerability

Suggestion Fixed

N5
call() should be used
instead of transfer()

Others Information Fixed

N6
Redundant ECDSA

Implementation
Others Information Fixed

N7
Multiple Pending
Owner Changes

Possible
Others Suggestion Acknowledged

N8
Inconsistent Sender

Address in Event
Emission

Malicious Event
Log Audit

Information Fixed

N9
Missing ChainId in

Signature Verification
Replay

Vulnerability
Information Fixed

4 Code Overview

4.1 Contracts Description

Audit Version:

https://bscscan.com/address/0x188042d7a332D34bE995f9084bE0bEBda2567c8a

https://bscscan.com/address/0xE54B7fE7b1058BD21c5Dc237853707787f6C881a

https://bscscan.com/address/0x10743E5546f3bFa2cFEEb7c5E4E06866EBD6BA5D

Fixed Version:

https://github.com/uxuycom/smart_wallet_contracts

commit: 29f91a561bcef631d41b14c1f4c3d5f13454840b

Audit Scope:

./contracts

├── UxuySmartEntry.sol
├── UxuySmartLogic.sol
├── UxuySmartLogicRegistry.sol
├── UxuySmartProxy.sol
└── libs
 ├── IUxuySmartLogic.sol
 └── IUxuySmartLogicRegistry.sol

The main network address of the contract is as follows:

UxuyWalletEntry

Contract Name Contract Address

UxuySmartEntry 0x743CB7d6D8fBBF93806DeC9B7700743a2641dae2

UxuySmartLogic 0x68F2A9688bCfA153939d15E593Ac675B466A8146

UxuySmartLogicRegistry 0x9C92F675319Db2305d3d3586B9f6094747Db4B44

4.2 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

UxuyWalletLogicRegistry

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State Ownable

setDefaultLogic External Can Modify State onlyOwner

UxuyWalletLogicRegistry

getDefaultLogic External - -

addLogic Public Can Modify State onlyOwner

removeLogic External Can Modify State onlyOwner

isAllowedLogic External - -

UxuyWalletProxy

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State ERC1967Proxy

UxuyWalletLogic

Function Name Visibility Mutability Modifiers

<Constructor> Public
Can Modify

State
-

initialize Public
Can Modify

State
initializer

pause External
Can Modify

State
onlyAdmin

unpause External
Can Modify

State
onlyAdmin

changeLogicMap External
Can Modify

State
whenNotPaused onlyAdmin

changeAdmin External
Can Modify

State
whenNotPaused onlyOwner

changeOwner External
Can Modify

State
whenNotPaused onlyOwner

confirmChangeOwner External
Can Modify

State
whenNotPaused onlyOwner

cancelChangeOwner External
Can Modify

State
whenNotPaused onlyOwner

_authorizeUpgrade Internal - onlyOwner

UxuyWalletLogic

upgradeTo External
Can Modify

State
whenNotPaused onlyOwner

executeBatch External
Can Modify

State
whenNotPaused onlyOwner

nonReentrant

executeBatchByAdmi
n

External
Can Modify

State
whenNotPaused onlyAdmin

executeBatchByEntry External
Can Modify

State
whenNotPaused onlyEntry

_deductGasFee Internal
Can Modify

State
-

setAdminAuthorization External
Can Modify

State
whenNotPaused onlyOwner

_call Internal
Can Modify

State
-

_recoverSigner Internal - -

_splitSignature Internal - -

<Receive Ether> External Payable -

UxuyWalletEntry

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State Ownable

pause External Can Modify State onlyOwner

unpause External Can Modify State onlyOwner

addPlatformAdmins External Can Modify State onlyOwner

removePlatformAdmins External Can Modify State onlyOwner

getAddress Public - -

createAccount Public Can Modify State whenNotPaused

execute External Can Modify State whenNotPaused nonReentrant

4.3 Vulnerability Summary

[N1] [Medium] Risk of excessive authority

Category: Authority Control Vulnerability Audit

Content

1.In the UxuyWalletLogicRegistry contract, the owner is an EOA address. The owner role can modify the defaultLogic

address and add other logic addresses through the setDefaultLogic and addLogic functions. The above

modifications will affect the creation of new UxuyWallet and the subsequent contract updates of the original

UxuyWallet.

Code location:

UxuyWalletLogicRegistry.sol#L19-L23, L29-L35

 function setDefaultLogic(address logic) external onlyOwner {

 addLogic(logic);

 defaultLogic = logic;

 emit DefaultLogicUpdated(logic);

 }

 function addLogic(address logic) public onlyOwner {

 require(logic != address(0), "Invalid logic address");

 require(!allowedLogics[logic], "Logic already added");

 allowedLogics[logic] = true;

 emit LogicAdded(logic);

 }

2.In the UxuyWalletEntry contract, the owner is an EOA address, which is the same as the UxuyWalletLogicRegistry

contract. The owner role can add or remove the platformAdmins through the addPlatformAdmins and

removePlatformAdmins functions. The platformAdmins role can create UxuyWallet for the specified user through the

execute function and become the admin role of the wallet. It can also call the executeBatchByEntry function of the

wallet through the execute function to perform specified operations, or directly perform operations on UxuyWallet

through the executeBatchByAdmin function.

Code location:

UxuyWalletEntry.sol#L86-L104

 function execute(IUxuyWalletLogic.ExecuteParams calldata params) external

whenNotPaused nonReentrant {

 address sender = params.sender;

 require(sender != address(0), "Invalid sender address");

 bool created = false;

 if (params.sender.code.length == 0) {

 sender = createAccount(params.user, params.salt, msg.sender);

 created = true;

 }

 if (params.dest.length > 0){

 require(platformAdmins[msg.sender] == true, "Not authorized platform

admin");

 IUxuyWalletLogic(sender).executeBatchByEntry(params);

 emit TransactionExecuted(params.user, params.sender, msg.sender, created);

 }

 }

Solution

In the short term, transferring ownership to multisig contracts with a timelock protection is an effective solution to

avoid single-point risk in the current situation. In the long run, it is also a reasonable solution to implement a privilege

separation strategy and set up multiple privileged roles to manage each privileged function separately. And the

authority involving user funds should be managed by the community, and the EOA address can manage the authority

involving emergency contract suspension. This ensures both a quick response to threats and the safety of user

funds.

Status

Fixed; After deployed, the Uxuy smart contract wallet system implements a rigorous multi-layered permission

architecture, delegating core system control to a multisig wallet

(0xEcc34657c79dcd4Ec6C986E8572e69E8e2a473E9) jointly managed by 3 EOA addresses, which controls

ownership of both UxuySmartEntry and UxuySmartLogicRegistry contracts, ensuring that system upgrades and

critical parameter changes; meanwhile, at the operational level, the system has designated 10 EOA addresses as

Platform Admins through transaction

0xa1a5c824ff7b66e54b1c6655868e0897d9ec176e1e41e1c55649b3e5fbd104f8, these administrators can assist in

executing daily operations, but their authority is strictly limited by smart contract logic, requiring user signature

authorization to execute asset-related transactions, thus creating a governance model that balances decentralization

with operational efficiency. The project team stated that the Admin can pay Gas on behalf of users, but the user’s

signature is required for confirmation. Admin cannot transfer assets without user confirmation.

[N2] [Low] Admin Authorization Bypass Enables Unauthorized Fund Draining

Category: Design Logic Audit

Content

In the UxuyWalletLogic contract, the executeBatchByAdmin function allows an admin to execute transactions on

behalf of the wallet owner. However, when adminAuthorizedUntil is set (which can be up to 30 days), an admin can

bypass signature verification entirely and construct arbitrary transactions to drain all assets from the wallet. This is

particularly dangerous because the admin can use the _deductGasFee function to transfer any token to any address

without the owner's consent.

Code location:

UxuyWalletLogic.sol#L140-L173, L220-L230

 function executeBatchByAdmin(ExecuteParams calldata params) external whenNotPaused

onlyAdmin{

 ...

 bool isAdminAuthorized = block.timestamp <= adminAuthorizedUntil;

 if (!isAdminAuthorized) {

 bytes32 messageHash = keccak256(abi.encode(params.dest, params.value,

params.func, params.gasToken, params.gasFee, params.userNonce, address(this)));

 bytes32 ethSignedMessageHash = keccak256(abi.encodePacked("\x19Ethereum

Signed Message:\n32", messageHash));

 address recoveredSigner = _recoverSigner(ethSignedMessageHash,

params.ownerSignature);

 require(recoveredSigner == owner, "Invalid user signature");

 }

 if (params.gasDeductBefore) {

 _deductGasFee(params.gasToken, params.gasFee, params.gasReceive);

 }

 ...

 if (!params.gasDeductBefore) {

 _deductGasFee(params.gasToken, params.gasFee, params.gasReceive);

 }

 ...

 }

 function setAdminAuthorization(uint256 daysDuration) external whenNotPaused

onlyOwner {

 require(daysDuration <= MAX_ADMIN_AUTH_TIME, "Exceeds max authorization

time");

 if (daysDuration <= 0){

 adminAuthorizedUntil = 0;

 emit AdminAuthorizationUpdated(false, 0);

 } else {

 adminAuthorizedUntil = block.timestamp + (daysDuration * 1 days);

 emit AdminAuthorizationUpdated(true, adminAuthorizedUntil);

 }

 }

Solution

It’s recommended to ensure all admin actions require explicit owner approval or be limited to non-fund-moving

operations.

Status

Acknowledged; After communicating with the project team, they stated that this is a functional requirement. In order

to enable the admin to pay for gas, the gas cost paid needs to be signed and confirmed by the user. The

authorization function is to meet the needs of the admin to trade on behalf of the user. This will remind the user on

the user side, and the authorization can be closed at any time.

[N3] [Suggestion] Redundant Computation of finalSalt

Category: Others

Content

In the UxuyWalletEntry contract, the same computation for finalSalt is performed in both the getAddress and

createAccount functions. The finalSalt is calculated using keccak256 with the same parameters in both locations,

which is inefficient and causes unnecessary gas consumption.

Code location:

UxuyWalletEntry.sol#L53-L84

 function getAddress(address user, uint256 salt, address admin) public view returns

(address) {

 bytes32 finalSalt = keccak256(abi.encodePacked(user, salt));

 …

 }

 function createAccount(address user, uint256 salt, address admin) public

whenNotPaused returns (address scw) {

 …

 address logicImpl = IUxuyWalletLogicRegistry(logicMapAddr).getDefaultLogic();

 bytes32 finalSalt = keccak256(abi.encodePacked(user, salt));

 UxuyWalletProxy proxy = new UxuyWalletProxy{salt: finalSalt}(

 logicImpl,

 abi.encodeCall(UxuyWalletLogic.initialize, (user, admin, address(this),

logicMapAddr))

);

 …

 }

Solution

It is recommended to refactor the code to avoid redundant computation by having createAccount call getAddress to

obtain the address, and then extract the finalSalt calculation into a separate internal function that both methods can

use when needed.

Status

Fixed

[N4] [Suggestion] Failure to follow the Checks-Effects-Interactions principle

Category: Reentrancy Vulnerability

Content

In the UxuyWalletLogic contract, both executeBatchByAdmin and executeBatchByEntry functions violate the

Checks-Effects-Interactions (CEI) pattern when params.gasDeductBefore is true. The functions first make an external

call through _deductGasFee and only afterward increment the nonce, which is a state change that should occur

before any external interactions. Code location:

UxuyWalletLogic.sol#L140-L205

 function executeBatchByAdmin(ExecuteParams calldata params) external whenNotPaused

onlyAdmin{

 …

 //gas

 if (params.gasDeductBefore) {

 _deductGasFee(params.gasToken, params.gasFee, params.gasReceive);

 }

 uint256 _nonce = nonce;

 nonce = _nonce + 1;

 …

 }

 function executeBatchByEntry(ExecuteParams calldata params) external

whenNotPaused onlyEntry{

 …

 if (params.gasDeductBefore) {

 _deductGasFee(params.gasToken, params.gasFee, params.gasReceive);

 }

 uint256 _nonce = nonce;

 nonce = _nonce + 1;

 …

 }

Solution

It is recommended to follow the CEI pattern by moving the nonce increment before any external calls.

Status

Fixed

[N5] [Information] call() should be used instead of transfer()

Category: Others

Content

The transfer() and send() functions forward a fixed amount of 2300 gas. Historically, it has often been recommended

to use these functions for value transfers to guard against reentrancy attacks. However, the gas cost of EVM

instructions may change significantly during hard forks which may break already deployed contract systems that

make fixed assumptions about gas costs. For example. EIP 1884 broke several existing smart contracts due to a

cost increase of the SLOAD instruction.

Code location:

UxuyWalletLogic.sol#L207-L218

 function _deductGasFee(address gasToken, uint256 gasFee, address gasReceive)

internal {

 if (gasFee > 0){

 if (gasToken == address(0)) {

 require(address(this).balance >= gasFee, "ETH balance not enough");

 payable(gasReceive).transfer(gasFee);

 } else {

 …

 }

 emit GasReceived(address(this), gasReceive, gasToken, gasFee);

 }

 }

Solution

It is recommended to use call() instead of transfer(), but be sure to respect the CEI pattern or add re-entrancy guards,

and the return value should be checked. It also needs to refer to the N4 solution.

Status

Fixed

[N6] [Information] Redundant ECDSA Implementation

Category: Others

Content

In the UxuyWalletLogic contract, the OpenZeppelin ECDSA library is imported but not utilized. Instead, the contract

implements its own signature verification logic with _recoverSigner and _splitSignature functions. This creates code

duplication, increases gas costs instead of using the OpenZeppelin implementation.

Code location:

UxuyWalletLogic.sol#L5-L6

import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

import "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";

Solution

It is recommended to replace the custom signature verification logic with the OpenZeppelin ECDSA library functions.

Status

Fixed

[N7] [Suggestion] Multiple Pending Owner Changes Possible

Category: Others

Content

In the UxuyWalletLogic contract, the changeOwner function allows the current owner to set multiple pending

ownership transfers simultaneously without invalidating previous requests. Each new ownership transfer request is

stored in the pendingOwnerChange mapping with a 7-day time lock. However, since there is no mechanism to cancel

previous pending transfers immediately when creating a new one, this could lead to confusion or forgotten and

potentially unintended ownership transfers when calling changeOwner multiple times, adding different

pendingOwnerChanges.

Code location:

UxuyWalletLogic.sol#L91-108

 function changeOwner(address newOwner) external whenNotPaused onlyOwner {

 require(newOwner != address(0), "Invalid new owner");

 emit OwnerChangePending(owner, newOwner);

 pendingOwnerChange[newOwner] = block.timestamp + 7 days;

 }

 function confirmChangeOwner(address newOwner) external whenNotPaused onlyOwner {

 require(pendingOwnerChange[newOwner] != 0, "No pending owner change");

 require(block.timestamp >= pendingOwnerChange[newOwner], "Change not yet

effective");

 emit OwnerChanged(owner, newOwner);

 owner = newOwner;

 delete pendingOwnerChange[newOwner];

 }

 function cancelChangeOwner(address newOwner) external whenNotPaused onlyOwner {

 require(pendingOwnerChange[newOwner] != 0, "No pending change");

 delete pendingOwnerChange[newOwner];

 }

Solution

It is recommended to implement a mechanism that ensures only one pending ownership transfer can be active at any

time.

Status

Acknowledged

[N8] [Information] Inconsistent Sender Address in Event Emission

Category: Malicious Event Log Audit

Content

In the UxuyWalletEntry contract, when a new account is created in the execute function, the sender variable is

properly updated to reference the newly created account. However, when emitting the TransactionExecuted event,

the code incorrectly uses the original params.sender rather than the updated sender value. This inconsistency may

cause confusion when interpreting event logs, as the logged sender address could be different from the actual

address used for transaction execution.

Code location:

UxuyWalletEntry.sol#L86-L104

 function execute(IUxuyWalletLogic.ExecuteParams calldata) external whenNotPaused

nonReentrant {

 address sender = params.sender;

 require(sender != address(0), "Invalid sender address");

 bool created = false;

 if (params.sender.code.length == 0) {

 sender = createAccount(params.user, params.salt, msg.sender);

 created = true;

 }

 if (params.dest.length > 0){

 ...;

 emit TransactionExecuted(params.user, params.sender, msg.sender, created);

 }

 }

Solution

It is recommended to use the updated sender variable in the event emission to maintain consistency.

Status

Fixed

[N9] [Information] Missing ChainId in Signature Verification

Category: Replay Vulnerability

Content

In the UxuyWalletLogic contract, the signature verification process does not include the chain ID in the message hash

construction. This omission could potentially enable cross-chain replay attacks if the same contract is deployed on

multiple EVM-compatible blockchains. An attacker could take a valid signature from one chain and replay it on

another chain where the same wallet contract exists.

Code location:

UxuyWalletLogic.sol#L148-L151, L181-L184

 bytes32 messageHash = keccak256(abi.encode(params.dest, params.value,

params.func, params.gasToken, params.gasFee, params.userNonce, address(this)));

 bytes32 ethSignedMessageHash = keccak256(abi.encodePacked("\x19Ethereum Signed

Message:\n32", messageHash));

 address recoveredSigner = _recoverSigner(ethSignedMessageHash,

params.ownerSignature);

 require(recoveredSigner == owner, "Invalid user signature");

Solution

It is recommended to include the chain ID in the message hash to prevent cross-chain replay attacks.

Status

Fixed

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002504010002 SlowMist Security Team 2025.03.31 - 2025.04.01 Low Risk

Summary conclusion: The SlowMist security team uses a manual and the SlowMist team's analysis tool to audit the

project. During the audit work, we found 1 medium risk, 1 low risk, 2 suggestions, and 5 information. All the findings

were fixed or acknowledged. The project has been successfully deployed to the mainnet. The ownership of

UxuySmartEntry and UxuySmartLogicRegistry contracts has been transferred to a 2-of-3 multisig wallet

(0xEcc34657c79dcd4Ec6C986E8572e69E8e2a473E9), and 10 EOA addresses have been properly configured as

Platform Admins through transaction

0xa1a5c824ff7b66e54b1c6655868e0897d9ec176e1e41e1c55649b3e5fbd104f8. Due to this robust permission

management structure and successful transfer of core role permissions, the risk assessment has been updated to

low risk.

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based on the

documents and materials provided to SlowMist by the information provider till the date of the insurance report

(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,

deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with

the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only

conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

